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Abstract
A conserved lattice gas with random neighbour hopping of active particles is
introduced which exhibits a continuous phase transition from an active state to
an absorbing non-active state. Since the randomness of the particle hopping
breaks long-range spatial correlations our model mimics the mean-field scaling
behaviour of the recently introduced new universality class of absorbing phase
transitions with a conserved field. The critical exponents of the order parameter
are derived within a simple approximation. The results are compared with those
of simulations and field theoretical approaches.

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

Recently Rossi et al introduced a conserved lattice gas (CLG) with a stochastic short-range
interaction that exhibits a continuous phase transition to an absorbing state at a critical value
of the particle density [1]. The CLG model is expected to belong to the universality class of
absorbing phase transitions with a conserved field [1]. This universality class is different from
the well known universality class of directed percolation (see [2, 3] or for an overview [4]).
In this work we introduce a modified CLG model with a random neighbour interaction. This
random neighbour interaction suppresses long-range correlations and the model is expected to
be characterized by the mean-field scaling behaviour. The critical exponent of the absorbing
phase transition is derived within a simple approximation. Numerical simulations of various
lattice types with different numbers of next neighbours confirm the obtained results.

Let us consider a system consisting of L sites on a chain with periodic boundary conditions.
At the beginning one distributes randomly N = ρL particles on the system where ρ denotes
the particle density. A particle is called active if at least one of its two neighbouring sites is
occupied. In the original CLG model active particles jump in the next update step to one of
their empty nearest-neighbour sites, selected at random [1]. In the steady state the system is
characterized by the density of active sites ρa which depends on ρ. The density of inactive
sites is given by ρ − ρa and 1 − ρ is the density of empty sites. The density ρa is the order
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parameter of the absorbing phase transition [1], i.e. it vanishes at the so-called critical density
of particles ρc (which, of course, is lower than the trivial value ρ = 1/2).

In our modification of the CLG model active particles are moved to a randomly chosen
empty lattice site which suppresses long-range correlations. On the other hand, short-range
correlations still do exist. For instance, close to the critical point, where the density of
active sites is sufficiently low, the density–density correlation function displays an alternating
behaviour due to the repulsive interaction of the particles. But these correlations are short
ranged and it is therefore possible to neglect them. The values of the critical exponents are not
affected by this approximation.

Let us consider a configuration C of the lattice with n active particles. The number of active
sites may change in each particle hopping, i.e. in each elementary update step. For instance, if
both new neighbours of the hopped particle are empty the number of active particles is reduced
by one, �n = −1. Without correlations the corresponding probability is (1 − ρ)2. If one of
the new neighbours of the hopped particle is occupied by an inactive particle (p = ρ − ρa)
and the second neighbour is empty (p = 1 −ρ), the number of active sites is increased by one
(�n = 1), and the corresponding probability is given by p = 2(1 − ρ)(ρ − ρa). All other
possible configurations and the corresponding probabilities are listed in table 1.

Table 1. The configuration of the lattice before (C) and after (C′) a particle hopping. Only the
target lattice site where a particle hops and its left and right neighbouring sites are shown. Empty
sites are marked by ◦, inactive sites are marked by ∗, and active sites by •. �n denotes the change
of the number of active sites due to the particle hopping and p is the corresponding probability of
the configuration C if one neglects spatial correlations.

C C′ �n p(C)

◦ ◦ ◦ ◦ ∗ ◦ −1 (1 − ρ)2

∗ ◦ ◦ • • ◦ +1 2(1 − ρ)(ρ − ρa)

∗ ◦ ∗ • • • +2 (ρ − ρa)
2

• ◦ ◦ • • ◦ 0 2ρa(1 − ρ)

• ◦ • • • • 0 ρ2
a

• ◦ ∗ • • • +1 2ρa(ρ − ρa)

In this way one can calculate the probabilities that the number of active particles are
changed by �n and one gets

p�n=−1 = (1 − ρ)2

p�n=0 = 2 ρa (1 − ρ) + ρ2
a

p�n=1 = 2 (ρ − ρa) (1 − ρ) + 2 ρa (ρ − ρa)

p�n=2 = (ρ − ρa)
2.

(1)

The expectation value of �n is

E[�n] =
2∑

�n=−1

�n p�n = −1 − 2ρa + 4ρ − ρ2. (2)

The average number of active sites is constant in the stationary state, i.e. the expectation value
of �n should be zero in the steady state. Using the constraint E[�n] = 0 it is possible to
calculate ρa as a function of ρ and one gets

ρa = 4ρ − ρ2 − 1

2
. (3)

The corresponding curve is plotted in figure 1 for 0 < ρ < 1. Negative values of ρa corresponds
to an absorbing state (i.e. ρa = 0). The critical point is determined by ρa = 0, which leads to
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Figure 1. The density of active sites ρa as a function of the particle density ρ in the steady state.
Negative values (dashed curve) correspond to an absorbing state with ρa = 0.

ρc = 2 − √
3 (the second solution can be neglected since ρc = 2 +

√
3 > 1). Writing ρa as a

function of the reduced density δρ = ρ − ρc one gets

ρa =
√

3 δρ − 1

2
δρ2. (4)

Thus the order parameter of the absorbing phase transition vanishes in leading order as ρa ∼ δρ,
i.e. the order parameter exponent is β = 1.

We briefly remark that it is straightforward to generalize the above derivation from a chain
with two neighbours to a d-dimensional cubic lattice with z = 2d neighbours. Since �n

depends on the number of inactive sites (∗) only (see table 1) the corresponding probabilities
are just polynomials in ρ∗ = ρ − ρa, i.e.

p�n=−1 = (1 − ρ)z

p�n=0 = (1 − ρ∗)z − (1 − ρ)z

p�n�1 =
(

z

�n

)
ρ�n

∗ (1 − ρ∗)z−�n.

(5)

Using again the steady state condition E[�n] = 0 one gets

ρa = ρ − (1 − ρ)z

z
. (6)

The critical density ρc is determined by ρa = 0. Expanding equation (6) around ρc yields

ρa = (2 − ρc) δρ + O(δρ2), (7)

i.e. the order parameter exponent is β = 1 independent of the number of next neighbours.
In the following we compare these results with those obtained from simulations. We

simulated a one-dimensional chain (z = 2) and a two-dimensional square lattice (z = 4)
where the active particles are moved to a randomly chosen empty lattice site. In both cases a
random sequential update was used and the results are plotted in figures 2 and 3, respectively.
As expected, the critical density ρc decreases with the number of next neighbours z. Note
that the critical value of the chain ρc ≈ 0.2224 and of the square lattice ρc ≈ 0.1244 differs
slightly from the above analytical result ρc = 0.2679... and ρc = 0.1380..., respectively.
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Figure 2. The average density of active sites for a one-dimensional chain of size L with random
particle hopping (z = 2). The dashed line corresponds to a linear fit, i.e. the order parameter
exponent is β = 1. The inset displays the fluctuations of the order parameter which exhibits a
discontinuous behaviour at the critical density ρc (dashed line).
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Figure 3. The density of active sites for a two-dimensional square lattice of linear size L with
random particle hopping (z = 4). The dashed line corresponds to a linear fit, i.e. the order parameter
exponent is β = 1. The inset displays the fluctuations of the order parameter which exhibits a
discontinuous behaviour at the critical density ρc (dashed line).

This deviation, which decreases with increasing z, is caused by the neglection of correlations
between neighbouring sites. Simulations reveal that these correlations exists but are of short
range (not shown). Therefore, the critical value is shifted but the scaling behaviour itself agrees
with our analytical results, i.e. the order parameter vanishes at the critical point continuously
with an exponent β = 1.

Additionally to the order parameter, its fluctuations

�ρa = LD
(〈ρ2

a 〉 − 〈ρa〉2
)

(8)

are measured in the simulations. Here D denotes the dimension of the system. As seen in the
insets of figures 2 and 3, the fluctuations exhibit a discontinuous behaviour (jump) at ρc.
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The value β = 1 and the jump of the fluctuations was also observed in the CLG model
above the critical dimension Dc = 4 [5] where the scaling behaviour of the model is determined
by the mean-field exponents. Furthermore, the values β = 1 and Dc = 4 were predicted within
a field theoretical approach which is expected to represent the universality class of absorbing
phase transitions with a conserved field [6, 7].

Finally, we just mention that the derivation of our results corresponds to a mapping of
the dynamics to a branching process (see, for instance, [8]). There each active site can create
i ∈ {0, 1, 2, 3} active sites in the next generation with the probability pi = p�n=i−1. The
steady state condition corresponds to the condition that the average number of created active
sites in the next generation is one, which yields directly equation (3).

SL would like to thank H K Janssen for helpful discussions and useful comments on the
manuscript.
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